Journal of Marine Science and Engineering (Mar 2024)

Research on Dynamic Quaternion Ship Domain Model in Open Water Based on AIS Data and Navigator State

  • Dongqin Liu,
  • Zhongyi Zheng,
  • Zihao Liu

DOI
https://doi.org/10.3390/jmse12030516
Journal volume & issue
Vol. 12, no. 3
p. 516

Abstract

Read online

During the process of establishing the analytical quaternion ship domain model, the impact of ship traffic conditions and navigator state was not taken into consideration. However, the significance of these factors in the ship domain cannot be ignored. To create a more realistic representation of changes in the ship domain in real navigation environments, this study further considers the influence of ship encounter course, waterway traffic intensity, relative ship velocity, and the navigator state based on the quaternion ship domain model. As a result, a new dynamic quaternion ship domain model is proposed. To assess the changes in the size and shape of the ship domain under various navigation environments, ship domain scaling and shape transformation functions are introduced. Specifically, this study focuses on analyzing the ship traffic near the Lao Tie Shan Waterway, simulating the size and shape changes of the ship domain during the navigation process in this area. The findings indicate that the size of the ship domain dynamically adjusts to the traffic conditions. Additionally, when the navigator state is excellent, the ship domain takes on an irregular diamond shape with the smallest area, whereas when the navigator state is poor, the shape approximates a rectangle with the largest area. Furthermore, the dynamic quaternion ship domain model proposed in this study is compared to the ship domain models put forth by Goodwin, Davis, and co-authors. The results demonstrate that the dynamic quaternion ship domain model is more compatible and suitable for open waters compared to the static quaternion ship domain model.

Keywords