Fractal and Fractional (May 2023)
Total Controllability for a Class of Fractional Hybrid Neutral Evolution Equations with Non-Instantaneous Impulses
Abstract
This study demonstrates the total control of a class of hybrid neutral fractional evolution equations with non-instantaneous impulses and non-local conditions. The boundary value problem with non-local conditions is created using the Caputo fractional derivative of order 1α≤2. In order to create novel, strongly continuous associated operators, the infinitesimal generator of the sine and cosine families is examined. Additionally, two approaches are used to discuss the solution’s total controllability. A compact strategy based on the non-linear Leray–Schauder alternative theorem is one of them. In contrast, a measure of a non-compactness technique is implemented using the Sadovskii fixed point theorem with the Kuratowski measure of non-compactness. These conclusions are applied using simulation findings for the non-homogeneous fractional wave equation.
Keywords