Brainstem fMRI signaling of surprise across different types of deviant stimuli
Audrey Mazancieux,
Franck Mauconduit,
Alexis Amadon,
Jan Willem de Gee,
Tobias H. Donner,
Florent Meyniel
Affiliations
Audrey Mazancieux
Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Corresponding author
Franck Mauconduit
NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
Alexis Amadon
NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
Jan Willem de Gee
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Tobias H. Donner
Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Florent Meyniel
Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Centre national de la recherche scientifique, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Institut de neuromodulation, GHU Paris, psychiatrie et neurosciences, centre hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France; Corresponding author
Summary: Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively triggers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine). We combine human functional MRI (fMRI) recordings optimized for brainstem imaging with pupillometry to perform a mapping of deviant-related responses in subcortical structures. Participants have to detect deviant items in a “local-global” paradigm that distinguishes between deviance based on the stimulus probability and the sequence structure. fMRI responses to deviant stimuli are distributed in many cortical areas. Both types of deviance elicit responses in the pupil, LC, and other neuromodulatory systems. Our results reveal that the detection of task-relevant deviant items recruits the same multiple subcortical systems across computationally different types of deviance.