Implementation of a Programmable Electronic Load for Equipment Testing
León Felipe Serna-Motoya,
José R. Ortiz-Castrillón,
Paula Andrea Gil-Vargas,
Nicolás Muñoz-Galeano,
Juan Bernardo Cano-Quintero,
Jesús M. López-Lezama
Affiliations
León Felipe Serna-Motoya
Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
José R. Ortiz-Castrillón
Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Paula Andrea Gil-Vargas
Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Nicolás Muñoz-Galeano
Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Juan Bernardo Cano-Quintero
Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
Jesús M. López-Lezama
Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia
This paper presents the implementation of an AC three-phase programmable electronic load (PEL) that emulates load profiles and can be used for testing equipment in microgrids (MGs). The implemented PEL topology is built with a voltage source inverter (VSI) which works as a current controlled source and a Buck converter which permits the dissipation of active power excess. The PEL operation modes according to the interchange of active and reactive power and its operation in four quadrants were determined. The power and current limits which establish the control limitations were also obtained. Three control loops were implemented to independently regulate active and reactive power and ensure energy balance in the system. The main contribution of this paper is the presentation a detailed analysis regarding hardware limitations and the operation of the VSI and Buck converter working together. The PEL was implemented for a power of 1.8 kVA. Several experimental results were carried out with inductive, capacitive, and resistive scenarios to validate the proper operation of the PEL. Experimental tests showed the correct behavior of the AC three-phase currents, VSI input voltage, and Buck converter output voltage of the PEL for profile changes, including transient response.