Pharmaceutical Sciences (Mar 2017)

A Colon Targeted Delivery System for Resveratrol Enriching in pH Responsive-Model

  • Hashem Andishmand, Hamed Hamishehkar, Afshin Babazadeh, Arezou Taghvimi, Mohammad Amin Mohammadifar, Mahnaz Tabibiazar

DOI
https://doi.org/10.15171/PS.2017.07
Journal volume & issue
Vol. 23, no. 1
pp. 42 – 49

Abstract

Read online

Background: Resveratrol effects on the prevention and treatment of colon cancer have been well documented recently, but low solubility, rapid absorption and metabolism of resveratrol limit its beneficial effects on colon cancer. Designing a formulation that enhances the solubility of resveratrol, protects resveratrol from oxidation and isomerization, and delivers it to the colon is a priority of food and drug industry. In this study, resveratrol-polyethylene glycol (PEG)-loaded pectin-chitosan polyelectrolyte complex was designed as a colon targeted delivery system. Methods: The effects of adding PEG, ultra-sonication time, pH, and pectin to chitosan ratio were investigated on particle size, polydispersity index (PDI), zeta potential by particle size analyzer, and scanning electron microscopy (SEM). Encapsulation efficiency (EE), release of resveratrol in simulated gastrointestinal fluid, and different pHs were analyzed via High Performance Liquid Chromatography (HPLC). Antioxidant activity was measured by (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) DPPH free-radical method. Results: Results showed that colloidal stable micro-particles (725 ± 20 nm) with PDI < 0.3 and zeta potential +27 ± 2 mV was formed in the ratio of 5:1 of pectin to chitosan w/v % after a 10-min sonication. Encapsulation efficiency was 81 ± 7 %. The reduction of antioxidant activity of resveratrol loaded micro-particles after one month was less than 13%. Micro-particles released about 33% of resveratrol in the simulated gastric and intestinal fluids. Conclusion: Two-thirds of the loaded resveratrol in Pectin-Chitosan complex reached colon. The developed system had enough specification for enriching fruit based drinks due to remarkable colloidal stability in the pH range of 3.5 to 4.5.

Keywords