Earth System Science Data (Jul 2021)

Introducing GloRiSe – a global database on river sediment composition

  • G. Müller,
  • J. J. Middelburg,
  • A. Sluijs

DOI
https://doi.org/10.5194/essd-13-3565-2021
Journal volume & issue
Vol. 13
pp. 3565 – 3575

Abstract

Read online

Rivers transport dissolved and solid loads from terrestrial realms to the oceans and between inland reservoirs, representing major mass fluxes on Earth's surface. The composition of river water and sediment provides clues to a plethora of Earth and environmental processes, including weathering, erosion, nutrient and carbon cycling, environmental pollution, reservoir exchange, and tectonic cycles. While there are documented, publicly available databases for riverine dissolved and suspended nutrients, there is no openly accessible, georeferenced database for riverine suspended sediment composition. Here, we present a globally representative set of 2828 suspended and bed sediment compositional measurements from 1683 locations around the globe. This database, named Global River Sediments (GloRiSe) version 1.1, includes major, minor and trace elements, along with mineralogical data, and provides time series for some sites. Each observation is complemented by metadata describing geographic location, sampling date and time, sample treatment, and measurement details, which allows for grouping and selection of observations, as well as for interoperability with external data sources, and improves interpretability. Information on references, unit conversion and references makes the database comprehensible. Notably, the close to globe-spanning extent of this compilation allows the derivation of data-driven, spatially resolved global-scale conclusions about the role of rivers and processes related to them within the Earth system. GloRiSe version 1.1 can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.4485795, Müller et al., 2021) and GitHub (https://github.com/GerritMuller/GloRiSe, last access: 26 May 2021), where updates with adapted version numbers will become available, along with a technical documentation and an example calculation in the form of MATLAB scripts, which calculate the sediment-flux-weighted major element composition of the annual riverine suspended sediment export to the ocean and related uncertainties.