Metabolic Engineering of the Isopentenol Utilization Pathway Enhanced the Production of Terpenoids in <i>Chlamydomonas reinhardtii</i>
Mei-Li Zhao,
Wen-Sheng Cai,
Si-Qi Zheng,
Jia-Lin Zhao,
Jun-Liang Zhang,
Ying Huang,
Zhang-Li Hu,
Bin Jia
Affiliations
Mei-Li Zhao
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Wen-Sheng Cai
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Si-Qi Zheng
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Jia-Lin Zhao
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Jun-Liang Zhang
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Ying Huang
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Zhang-Li Hu
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Bin Jia
Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
Eukaryotic green microalgae show considerable promise for the sustainable light-driven biosynthesis of high-value fine chemicals, especially terpenoids because of their fast and inexpensive phototrophic growth. Here, the novel isopentenol utilization pathway (IUP) was introduced into Chlamydomonas reinhardtii to enhance the hemiterpene (isopentenyl pyrophosphate, IPP) titers. Then, diphosphate isomerase (IDI) and limonene synthase (MsLS) were further inserted for limonene production. Transgenic algae showed 8.6-fold increase in IPP compared with the wild type, and 23-fold increase in limonene production compared with a single MsLS expressing strain. Following the culture optimization, the highest limonene production reached 117 µg/L, when the strain was cultured in a opt2 medium supplemented with 10 mM isoprenol under a light: dark regimen. This demonstrates that transgenic algae expressing the IUP represent an ideal chassis for the high-value terpenoid production. The IUP will facilitate further the metabolic and enzyme engineering to enhance the terpenoid titers by significantly reducing the number of enzyme steps required for an optimal biosynthesis.