AIMS Mathematics (Jun 2023)
Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator
Abstract
In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator $ \begin{align*} \left\{\begin{array}{rl} -\Delta_{p}u+(-\Delta)_{p}^su = f(x)u^{\gamma},&x\in\Omega,\\ u = 0,\; \; \; \; \; \; \; \; &x\in \mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $ where $ s\in(0, 1) $, $ 1 < p < N $, $ f\in L^{m}(\Omega) $ with $ m > \frac{Np}{p(s+p-1)-\gamma(N-sp)} $, $ 0\leqslant\gamma < p_s^*-1 $, $ p_s^{*} = \frac{Np}{N-sp} $ is the critical Sobolev exponent.
Keywords