AIMS Mathematics (Jun 2023)

Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator

  • Xicuo Zha,
  • Shuibo Huang,
  • Qiaoyu Tian

DOI
https://doi.org/10.3934/math.20231053
Journal volume & issue
Vol. 8, no. 9
pp. 20665 – 20678

Abstract

Read online

In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator $ \begin{align*} \left\{\begin{array}{rl} -\Delta_{p}u+(-\Delta)_{p}^su = f(x)u^{\gamma},&x\in\Omega,\\ u = 0,\; \; \; \; \; \; \; \; &x\in \mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $ where $ s\in(0, 1) $, $ 1 < p < N $, $ f\in L^{m}(\Omega) $ with $ m > \frac{Np}{p(s+p-1)-\gamma(N-sp)} $, $ 0\leqslant\gamma < p_s^*-1 $, $ p_s^{*} = \frac{Np}{N-sp} $ is the critical Sobolev exponent.

Keywords