PLoS ONE (Jan 2023)
Automated 3-dimensional MRI segmentation for the posterosuperior rotator cuff tear lesion using deep learning algorithm.
Abstract
IntroductionRotator cuff tear (RCT) is a challenging and common musculoskeletal disease. Magnetic resonance imaging (MRI) is a commonly used diagnostic modality for RCT, but the interpretation of the results is tedious and has some reliability issues. In this study, we aimed to evaluate the accuracy and efficacy of the 3-dimensional (3D) MRI segmentation for RCT using a deep learning algorithm.MethodsA 3D U-Net convolutional neural network (CNN) was developed to detect, segment, and visualize RCT lesions in 3D, using MRI data from 303 patients with RCTs. The RCT lesions were labeled by two shoulder specialists in the entire MR image using in-house developed software. The MRI-based 3D U-Net CNN was trained after the augmentation of a training dataset and tested using randomly selected test data (training: validation: test data ratio was 6:2:2). The segmented RCT lesion was visualized in a three-dimensional reconstructed image, and the performance of the 3D U-Net CNN was evaluated using the Dice coefficient, sensitivity, specificity, precision, F1-score, and Youden index.ResultsA deep learning algorithm using a 3D U-Net CNN successfully detected, segmented, and visualized the area of RCT in 3D. The model's performance reached a 94.3% of Dice coefficient score, 97.1% of sensitivity, 95.0% of specificity, 84.9% of precision, 90.5% of F1-score, and Youden index of 91.8%.ConclusionThe proposed model for 3D segmentation of RCT lesions using MRI data showed overall high accuracy and successful 3D visualization. Further studies are necessary to determine the feasibility of its clinical application and whether its use could improve care and outcomes.