Heliyon (Mar 2024)

Ginsenoside Re protects rhinovirus-induced disruption of tight junction through inhibition of ROS-mediated phosphatases inactivation in human nasal epithelial cells

  • Kyeong Ah Kim,
  • Joo Hyun Jung,
  • Yun Sook Choi,
  • Seon Tae Kim

Journal volume & issue
Vol. 10, no. 5
p. e27688

Abstract

Read online

Maintaining tight junction integrity significantly contributes to epithelial barrier function. If the barrier function is destroyed, the permeability of the cells increases, and the movement of the pathogens is promoted, thereby further increasing the susceptibility to secondary infection. Ginsenoside components have multiple biological activities, including antiviral effects. In this study, we examined the protective effects of ginsenoside Re against rhinovirus-induced tight junction disruption in primary human nasal epithelial cells (HNE). Incubation with human rhinovirus resulted in marked disruption of tight junction proteins (ZO-1, E-cadherin, claudin-1, and occludin) in human nasal epithelial cells. Rhinovirus-induced disruption of tight junction proteins was strongly inhibited by the treatment of cells with ginsenoside Re. Indeed, significant amounts of reactive oxygen species (ROS) have been detected in human nasal epithelial cells co-incubated with rhinovirus. Moreover, rhinovirus-induced ROS generation was markedly reduced by the ginsenoside Re. However, ginsenosides Rb1 and Rc did not inhibit tight junction disruption or ROS generation in nasal epithelial cells following incubation with rhinovirus. Furthermore, incubation with rhinovirus resulted in a marked decrease in protein phosphatase activity and an increase in protein tyrosine phosphorylation levels in nasal epithelial cells. Treatment of cells with ginsenoside Re inhibited rhinovirus-induced inactivation of phosphatases and phosphorylation of tyrosine. Our results identified ginsenoside Re as an effective compound that prevented rhinovirus-induced tight junction disruption in human nasal epithelial cells.

Keywords