Eurasian Chemico-Technological Journal (Sep 2012)

Influence of the Surface Properties of the Bois Carre Seeds Activated Carbon for the Removal of Lead From Aqueous Ssolutions

  • L. Largitte,
  • S. Gervelas,
  • T. Tant,
  • P. Couespel Dumesnil,
  • P. Lodewyckx

DOI
https://doi.org/10.18321/ectj115
Journal volume & issue
Vol. 14, no. 3
pp. 201 – 210

Abstract

Read online

An activated carbon from Bois carré (Citharexylum Fruticosum L.) seeds was prepared by chemical activation with phosphoric acid. The activated carbon obtained has a surface area of 594 m2/g and a high content of acid groups of 3.44 mmol.g-1. This carbon was studied for the removal of lead from water. Sorption studies were performed at 30 °C at different pH and adsorbent doses, in batch mode. Maximum adsorption occurred at pH 7 for an adsorbent dose of 1g/L. Kinetic studies, at the initial concentration of 150 mg/L of lead, pH 5 and an adsorbent dose of 1 g/L, yielded an equilibrium time of 30 h for this activated carbon. The kinetic data were modelled with the pseudo first order, the pseudo second order and the Bangham models. The pseudo second order model fitted the data well. The sorption rate constant (2.10-3 mol-1.Kg.s-1) and the maximum amount of lead adsorbed are quite good (0.18 mol.kg-1) compared to the data found in literature. Sorption equilibrium studies were conducted in a concentration range of lead from 0 to 150 mg/L, at pH 5, adsorbent dose 1 g/L. In an aqueous lead solution with an initial concentration of 30 mg/L, activated Bois carré seed carbon removed (at equilibrium) 48 % of the heavy metal. The equilibrium data were modelled with the Langmuir and Freundlich equations, of which the latter gave the best fit. The Freundlich constants n (3.76 L.mol-1) and Kf (1.06 mol.kg-1) are in good agreement with literature. The Bois carré seed activated carbon is a very efficient carbon in terms of the metal amount adsorbed per unit of surface area (0. 06 m2 /g). This good result is due to the presence of many active acid sites on the surface of this activated carbon.