Drones (Aug 2024)

Non-Line-of-Sight Positioning Method for Ultra-Wideband/Miniature Inertial Measurement Unit Integrated System Based on Extended Kalman Particle Filter

  • Chengzhi Hou,
  • Wanqing Liu,
  • Hongliang Tang,
  • Jiayi Cheng,
  • Xu Zhu,
  • Mailun Chen,
  • Chunfeng Gao,
  • Guo Wei

DOI
https://doi.org/10.3390/drones8080372
Journal volume & issue
Vol. 8, no. 8
p. 372

Abstract

Read online

In the field of unmanned aerial vehicle (UAV) control, high-precision navigation algorithms are a research hotspot. To address the problem of poor localization caused by non-line-of-sight (NLOS) errors in ultra-wideband (UWB) systems, an UWB/MIMU integrated navigation method was developed, and a particle filter (PF) algorithm for data fusion was improved upon. The extended Kalman filter (EKF) was used to improve the method of constructing the importance density function (IDF) in the traditional PF, so that the particle sampling process fully considers the real-time measurement information, increases the sampling efficiency, weakens the particle degradation phenomenon, and reduces the UAV positioning error. We compared the positioning accuracy of the proposed extended Kalman particle filter (EKPF) algorithm with that of the EKF and unscented Kalman filter (UKF) algorithm used in traditional UWB/MIMU data fusion through simulation, and the results proved the effectiveness of the proposed algorithm through outdoor experiments. We found that, in NLOS environments, compared with pure UWB positioning, the accuracy of the EKPF algorithm in the X- and Y-directions was increased by 35% and 39%, respectively, and the positioning error in the Z-direction was considerably reduced, which proved the practicability of the proposed algorithm.

Keywords