The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Oct 2019)

PROJECTION OF INCIDENT SURFACE SOLAR RADIATION IN CHINA UNDER A CLIMATE CHANGE SCENARIO

  • Y. K. Xiao,
  • Z. M. Ji,
  • C. S. Fu,
  • W. T. Du,
  • J. H. Yang,
  • W. J. Dong

DOI
https://doi.org/10.5194/isprs-archives-XLII-3-W9-187-2019
Journal volume & issue
Vol. XLII-3-W9
pp. 187 – 194

Abstract

Read online

We projected incident surface solar radiation (SSR) over China in the middle (2040–2059) and end (2080–2099) of the 21st century in the Representative Concentration Pathway (RCP) 8.5 scenario using a multi-model ensemble derived from the weighted average of seven global climate models (GCMs). The multi-model ensemble captured the contemporary (1979–2005) spatial and temporal characteristics of SSR and reproduced the long-term temporal evolution of the mean annual SSR in China. However, it tended to overestimate values compared to observations due to the absence of aerosol effects in the simulations. The future changes in SSR showed increases over eastern and southern China, and decreases over the Tibetan Plateau (TP) and northwest China relative to the present day. At the end of the 21st century, there were SSR increases of 9–21 W m−2 over northwest, central, and south China, and decreases of 18–30 W m−2 over the TP in June–July–August (JJA). In northeast China, SSR showed seasonal variation with increases in JJA and decreases in December–January–February. The time series of annual SSR had a decreased linear trend for the TP, and a slightly increased trend for China during 2006–2099. The results of our study suggest that solar energy resources will likely decrease in the TP under future climate change scenarios.