Discover Oncology (Oct 2024)

LINC00342 regulates the PI3K-AKT signaling pathway via the miR-149-5p/FGF11 axis and affects the progression of oral cancer

  • Yimiao Chen,
  • Yanchun Wang,
  • Wenbo Zhang

DOI
https://doi.org/10.1007/s12672-024-01457-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background A large number of long non-coding RNAs (lncRNAs) have been implicated in the progression of oral cancer (OC). This study aimed to investigate the role of a novel lncRNA, LINC00342, in OC and elucidate its molecular mechanism. Methods Differential expression of lncRNA/miRNA/mRNA was analyzed using the Gene Expression Omnibus database and validated with RT-qPCR. Additionally, the expression levels of these molecules in OC cells and their effects on cell viability and cell cycle were assessed using the Cell Counting Kit-8 and flow cytometry. RNA bindings was analyzed by dual luciferase, and Western blot was used to detect the activation of relevant pathways. Results This study showed that, in contrast to miR-149-5p, the expression of LINC00342 and fibroblast growth factor 11 (FGF11) were upregulated in OC cells (LINC00342: 10.00 ± 1.06 (FaDu) and 3.55 ± 0.25 (CAL-27) vs 1.00 ± 0.07 (HOECs), P < 0.05; FGF11: 7.31 ± 0.33 (FaDu) and 3.43 ± 0.08 (CAL-27) vs 1.00 ± 0.10 (HOECs), P < 0.05). Dual-luciferase assays confirmed that LINC00342 bind to miR-149-5p in a direct targeting manner. Furthermore, inhibition of LINC00342 expression resulted in decreased proliferation rate (FaDu: 136.22 ± 22.10% vs 59.36 ± 8.98% (control), P < 0.05; CAL-27: 131.40 ± 11.58% vs 49.83 ± 11.19 (control), P < 0.05) and migration ability of OC cells, cell cycle arrest in G1 phase, and inhibition of PI3K-AKT signaling. Inhibition of miR-149-5p or overexpression of FGF11 reversed the effects of si-LINC00342. Conclusions LINC00342 promotes PI3K-AKT signaling by activating FGF11 through adsorption of miR-149-5p, thereby regulating the progression of OC.

Keywords