Applied Sciences (Sep 2024)
A Path Planning Method Based on Hybrid Sand Cat Swarm Optimization Algorithm of Green Multimodal Transportation
Abstract
Aiming at the difficulty of measuring various costs and time-consuming elements in multimodal transport, this paper constructs a green vehicle comprehensive multimodal transport model which incorporates transportation, transit, quality damage, fuel consumption, and carbon emission costs and proposes a hybrid embedded time window to calculate the time penalty cost in order to reflect the actual transport characteristics. Furthermore, in order to better solve the model, a hybrid sand cat swarm optimization (HSCSO) algorithm is proposed by introducing Logistic–Tent chaotic mapping and an adaptive lens opposition-based learning strategy to enhance the global search capability, and inspired by the swarm intelligence scheme, a momentum–bellicose strategy and an equilibrium crossover pool are introduced to improve the search efficiency and convergence ability. Through testing nine benchmark functions, the HSCSO algorithm exhibits superior convergence accuracy and speed in dealing with complex multi-dimensional problems. Based on the excellent global performance, the HSCSO algorithm was utilized for multimodal vehicle transportation in East China, and a path with a lower comprehensive cost was successfully planned, which proved the effectiveness of the HSCSO algorithm in green intermodal transport path planning.
Keywords