Advances in Electrical and Computer Engineering (Aug 2024)
MINI Logic 1-Bit Adder: A Comparison with Hybrid NMOS-Memristor-Logic Styles Using Ta2O5/Al2O3 Based RRAM Device
Abstract
This study addresses the demand for more efficient logic circuits by focusing on reducing area, power consumption, and delay. As conventional CMOS technology faces scaling and efficiency limitations, integrating emerging memory technologies like Resistive Random Access Memory (RRAM), also known as memristor, offers a promising solution. By replacing conventional PMOS transistors with memristors in CMOS logic, the study leverages the high-off resistance and low-voltage operation of RRAM devices to develop more compact and energy-efficient circuits. The proposed RRAM device is a Metal-Insulator-Metal structure fabricated with Platinum electrodes, Aluminum Oxide and Tantalum Pentoxide insulator layers. It operates with set and reset voltages of 1 V, and its current-voltage characteristics were theoretically modeled using the VTEAM model. A Memristor-based Imply and N-Imply(MINI) logic approach is introduced for XNOR, XOR and 2X1 Multiplexer designs and compared with three other hybrid NMOS-Memristor logics. Implementing 36 different 1-bit adder circuits in the Cadence Virtuoso 45 nm technology, the study evaluates area efficiency, power consumption, and delay. Results show that the memristor-based MINI logic designs are more area and power-efficient than traditional CMOS-based full adders and various optimized CMOS and memristor-based logics. This research underscores the potential of the proposed RRAM device integration in advanced hybrid logic design.
Keywords