Scientific Reports (Jul 2024)
Foam density mapping via THz imaging
Abstract
Abstract Plastic foams, near-ubiquitous in everyday life and industry, show properties that depend primarily on density. Density measurement, although straightforward in principle, is not always easy. As such, while several methods are available, plastic foam industry is not yet supported with a standard technique that effectively enables to control density maps. To overcome this issue, this paper proposes Terahertz (THz) time-of-flight imaging using normal reflection measurements as a fast, relatively cheap, contactless, non-destructive and non-dangerous way to map plastic foam density, based on the expected relationship between density and refractive index. The approach is demonstrated in the case of polypropylene foams. First, the relationship between the estimated effective refractive index and the polypropylene foam density is derived by characterizing a set of carefully crafted samples having uniform density in the range 70–900 kg/m3. The obtained calibration curve subtends a linear relationship between the density and the refractive index in the range of interest. This relationship is validated against a set of test samples, whose estimated average densities are consistent with the nominal ones, with an absolute error lower than 10 kg/m3 and a percentage error on the estimate of 5%. Exploiting the calibration curve, it is possible to build quantitative images depicting the spatial distribution of the sample density. THz images are able to reveal the non-uniform density distribution of some samples, which cannot be appreciated from visual inspection. Finally, the complex spatial density pattern of a graded foam sample is characterized and quantitatively compared with the density map obtained via X-ray microscopy. The comparison confirms that the proposed THz approach successfully determines the density pattern with an accuracy and a spatial scale variability compliant with those commonly required for plastic foam density estimate.
Keywords