Journal of Water Reuse and Desalination (Mar 2019)
Heterotrophic nitrification and aerobic denitrification using pure-culture bacteria for wastewater treatment
Abstract
Due to the high water demand and unsustainable water resource, wastewater reclamation and wastewater treatment prior to discharge have become current important issues. Various treatment technologies, such as biological processes, have been improved as alternatives. In this study, the biological nitrogen removal system using pure-culture Bacillus licheniformis was developed and used as an internal treatment unit in an aquarium to improve the effluent quality for water reuse. The efficiencies for NH4-N and total nitrogen (TN) removal and the quality of treated water verified the occurrence of heterotrophic nitrification and aerobic denitrification; the nitrification rate was 0.84 mg/L-h and the denitrification rate was 0.62 mg/L-h. The maximal NH4-N and TN removal efficiencies were approximately 73% at the influent NH4-N of 30 mg/L. However, the other competitive heterotroph of Pseudomonas sp. was observed, which resulted in dramatically decreasing efficiencies and an enlarged ratio of carbon consumption and nitrogen removal. Although the overall performance of the B. licheniformis system was lower than the system using mixed-culture nitrifying and heterotrophic denitrifying microorganisms, the advantages of the B. licheniformis system were ease of operation and the fact that it is a land-limited treatment system. The research is ongoing to enhance performance and maintain excellent efficiency in a long-term operation.
Keywords