Machines (Jan 2024)

A Novel Customised Load Adaptive Framework for Induction Motor Fault Classification Utilising MFPT Bearing Dataset

  • Shahd Ziad Hejazi,
  • Michael Packianather,
  • Ying Liu

DOI
https://doi.org/10.3390/machines12010044
Journal volume & issue
Vol. 12, no. 1
p. 44

Abstract

Read online

This research presents a novel Customised Load Adaptive Framework (CLAF) for fault classification in Induction Motors (IMs), utilising the Machinery Fault Prevention Technology (MFPT) bearing dataset. CLAF represents a pioneering approach that extends traditional fault classification methodologies by accounting for load variations and dataset customisation. Through a meticulous two-phase process, it unveils load-dependent fault subclasses that have not been readily identified in traditional approaches. Additionally, new classes are created to accommodate the dataset’s unique characteristics. Phase 1 involves exploring load-dependent patterns in time and frequency domain features using one-way Analysis of Variance (ANOVA) ranking and validation via bagged tree classifiers. In Phase 2, CLAF is applied to identify mild, moderate, and severe load-dependent fault subclasses through optimal Continuous Wavelet Transform (CWT) selection through Wavelet Singular Entropy (WSE) and CWT energy analysis. The results are compelling, with a 96.3% classification accuracy achieved when employing a Wide Neural Network to classify proposed load-dependent fault subclasses. This underscores the practical value of CLAF in enhancing fault diagnosis in IMs and its future potential in advancing IM condition monitoring.

Keywords