Mechanochemically Synthetized PAN-Based Co-N-Doped Carbon Materials as Electrocatalyst for Oxygen Evolution Reaction
Paulette Gómez-López,
José Ángel Salatti-Dorado,
Daily Rodríguez-Padrón,
Manuel Cano,
Clemente G. Alvarado-Beltrán,
Alain R. Puente-Santiago,
Juan J. Giner-Casares,
Rafael Luque
Affiliations
Paulette Gómez-López
Grupo FQM-383, Departamento de Química Orgánica, Universidad de Córdoba, E-14071 Córdoba, Spain
José Ángel Salatti-Dorado
Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica (IUNAN), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
Daily Rodríguez-Padrón
Grupo FQM-383, Departamento de Química Orgánica, Universidad de Córdoba, E-14071 Córdoba, Spain
Manuel Cano
Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica (IUNAN), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
Clemente G. Alvarado-Beltrán
Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Angel Flores, S.N., 81223 Los Mochis Sin., Mexico
Alain R. Puente-Santiago
Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
Juan J. Giner-Casares
Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica (IUNAN), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
Rafael Luque
Grupo FQM-383, Departamento de Química Orgánica, Universidad de Córdoba, E-14071 Córdoba, Spain
We report a new class of polyacrylonitrile (PAN)-based Co-N-doped carbon materials that can act as suitable catalyst for oxygen evolution reactions (OER). Different Co loadings were mechanochemically added into post-consumed PAN fibers. Subsequently, the samples were treated at 300 °C under air (PAN-A) or nitrogen (PAN-N) atmosphere to promote simultaneously the Co3O4 species and PAN cyclization. The resulting electrocatalysts were fully characterized and analyzed by X-ray diffraction (XRD) and photoelectron spectroscopy (XPS), transmission (TEM) and scanning electron (SEM) microscopies, as well as nitrogen porosimetry. The catalytic performance of the Co-N-doped carbon nanomaterials were tested for OER in alkaline environments. Cobalt-doped PAN-A samples showed worse OER electrocatalytic performance than their homologous PAN-N ones. The PAN-N/3% Co catalyst exhibited the lowest OER overpotential (460 mV) among all the Co-N-doped carbon nanocomposites, reaching 10 mA/cm2. This work provides in-depth insights on the electrocatalytic performance of metal-doped carbon nanomaterials for OER.