The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential
Luis Alberto Bravo Vázquez,
Mariana Yunuen Moreno Becerril,
Erick Octavio Mora Hernández,
Gabriela García de León Carmona,
María Emilia Aguirre Padilla,
Samik Chakraborty,
Anindya Bandyopadhyay,
Sujay Paul
Affiliations
Luis Alberto Bravo Vázquez
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
Mariana Yunuen Moreno Becerril
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
Erick Octavio Mora Hernández
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Mexico City, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
Gabriela García de León Carmona
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
María Emilia Aguirre Padilla
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
Samik Chakraborty
Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Anindya Bandyopadhyay
International Rice Research Institute, Manila 4031, Philippines
Sujay Paul
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
MicroRNAs (miRNAs) are a class of small (20–24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.