Plants (Dec 2022)

Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data

  • Luís Pádua,
  • Lia Duarte,
  • Ana M. Antão-Geraldes,
  • Joaquim J. Sousa,
  • João Paulo Castro

DOI
https://doi.org/10.3390/plants11243465
Journal volume & issue
Vol. 11, no. 24
p. 3465

Abstract

Read online

Monitoring invasive plant species is a crucial task to assess their presence in affected ecosystems. However, it is a laborious and complex task as it requires vast surface areas, with difficult access, to be surveyed. Remotely sensed data can be a great contribution to such operations, especially for clearly visible and predominant species. In the scope of this study, water hyacinth (Eichhornia crassipes) was monitored in the Lower Mondego region (Portugal). For this purpose, Sentinel-2 satellite data were explored enabling us to follow spatial patterns in three water channels from 2018 to 2021. By applying a straightforward and effective methodology, it was possible to estimate areas that could contain water hyacinth and to obtain the total surface area occupied by this invasive species. The normalized difference vegetation index (NDVI) was used for this purpose. It was verified that the occupation of this invasive species over the study area exponentially increases from May to October. However, this increase was not verified in 2021, which could be a consequence of the adopted mitigation measures. To provide the results of this study, the methodology was applied through a semi-automatic geographic information system (GIS) application. This tool enables researchers and ecologists to apply the same approach in monitoring water hyacinth or any other invasive plant species in similar or different contexts. This methodology proved to be more effective than machine learning approaches when applied to multispectral data acquired with an unmanned aerial vehicle. In fact, a global accuracy greater than 97% was achieved using the NDVI-based approach, versus 93% when using the machine learning approach (above 93%).

Keywords