Journal of Marine Science and Engineering (Aug 2020)

Wave Interaction with Single and Twin Vertical and Sloped Slotted Walls

  • Mohamad Alkhalidi,
  • Noor Alanjari,
  • S. Neelamani

DOI
https://doi.org/10.3390/jmse8080589
Journal volume & issue
Vol. 8, no. 8
p. 589

Abstract

Read online

The interaction between waves and slotted vertical walls was experimentally studied in this research to examine the performance of the structure in terms of wave transmission, reflection, and energy dissipation. Single and twin slotted barriers of different slopes and porosities were tested under random wave conditions. A parametric analysis was performed to understand the effect of wall porosity and slope, the number of walls, and the incoming relative wave height and period on the structure performance. The main focus of the study was on wave transmission, which is the main parameter required for coastal engineering applications. The results show that reducing wall porosity from 30% to 10% decreases the wave transmission by a maximum of 35.38% and 38.86% for single and twin walls, respectively, increases the wave reflection up to 47.6%, and increases the energy dissipation by up to 23.7% on average for single walls. For twin-walls, the reduction in wall porosity decreases the wave transmission up to 26.3%, increases the wave reflection up to 40.5%, and the energy dissipation by 13.3%. The addition of a second wall is more efficient in reducing the transmission coefficient than the other wall parameters. The reflection and the energy dissipation coefficients are more affected by the wall porosity than the wall slope or the existence of a second wall. The results show that as the relative wave height increases from 0.1284 to 0.2593, the transmission coefficient decreases by 21.2%, the reflection coefficient decreases by 15.5%, and the energy dissipation coefficient increases by 18.4% on average. Both the transmission and the reflection coefficients increase as the relative wave length increases while the energy dissipation coefficient decreases. The variation in the three coefficients is more significant in deep water than in shallower water.

Keywords