Stomatal and Non-Stomatal Leaf Responses during Two Sequential Water Stress Cycles in Young <i>Coffea canephora</i> Plants
Danilo F. Baroni,
Guilherme A. R. de Souza,
Wallace de P. Bernado,
Anne R. Santos,
Larissa C. de S. Barcellos,
Letícia F. T. Barcelos,
Laísa Z. Correia,
Claudio M. de Almeida,
Abraão C. Verdin Filho,
Weverton P. Rodrigues,
José C. Ramalho,
Miroslava Rakočević,
Eliemar Campostrini
Affiliations
Danilo F. Baroni
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Guilherme A. R. de Souza
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Wallace de P. Bernado
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Anne R. Santos
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Larissa C. de S. Barcellos
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Letícia F. T. Barcelos
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Laísa Z. Correia
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Claudio M. de Almeida
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Abraão C. Verdin Filho
Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória 29052-010, ES, Brazil
Weverton P. Rodrigues
Centro de Ciências Agrárias, Universidade Estadual da Região Tocantina do Maranhão, Avenida Agrária 100, Imperatriz, Imperatriz 65900-001, MA, Brazil
José C. Ramalho
Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), 1349-017 Lisboa, Portugal
Miroslava Rakočević
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Eliemar Campostrini
Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes 28013-602, RJ, Brazil
Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions as: (1) Are there differences in the stomatal-related and non-stomatal responses during water stress cycles in different clones of Coffea canephora Pierre ex A. Froehner? (2) Do these C. canephora clones show a different response in each of the two sequential water stress events? (3) Is one previous drought stress event sufficient to induce a kind of “memory” in C. canephora? Seven-month-old plants of two clones (’3V’ and ‘A1’, previously characterized as deeper and lesser deep root growth, respectively) were maintained well-watered (WW) or fully withholding the irrigation, inducing soil water stress (WS) until the soil matric water potential (Ψmsoil) reached ≅ −0.5 MPa (−500 kPa) at a soil depth of 500 mm. Two sequential drought events (drought-1 and drought-2) attained this Ψmsoil after 19 days and were followed by soil rewatering until a complete recovery of leaf net CO2 assimilation rate (Anet) during the recovery-1 and recovery-2 events. The leaf gas exchange, chlorophyll a fluorescence, and leaf reflectance parameters were measured in six-day frequency, while the leaf anatomy was examined only at the end of the second drought cycle. In both drought events, the WS plants showed reduction in stomatal conductance and leaf transpiration. The reduction in internal CO2 diffusion was observed in the second drought cycle, expressed by increased thickness of spongy parenchyma in both clones. Those stomatal and anatomical traits impacted decreasing the Anet in both drought events. The ‘3V’ was less influenced by water stress than the ‘A1’ genotype in Anet, effective quantum yield in PSII photochemistry, photochemical quenching, linear electron transport rate, and photochemical reflectance index during the drought-1, but during the drought-2 event such an advantage disappeared. Such physiological genotype differences were supported by the medium xylem vessel area diminished only in ‘3V’ under WS. In both drought cycles, the recovery of all observed stomatal and non-stomatal responses was usually complete after 12 days of rewatering. The absence of photochemical impacts, namely in the maximum quantum yield of primary photochemical reactions, photosynthetic performance index, and density of reaction centers capable of QA reduction during the drought-2 event, might result from an acclimation response of the clones to WS. In the second drought cycle, the plants showed some improved responses to stress, suggesting “memory” effects as drought acclimation at a recurrent drought.