Applied Sciences (Aug 2022)

Prediction of Temperature and Carbon Concentration in Oxygen Steelmaking by Machine Learning: A Comparative Study

  • Ján Kačur,
  • Patrik Flegner,
  • Milan Durdán,
  • Marek Laciak

DOI
https://doi.org/10.3390/app12157757
Journal volume & issue
Vol. 12, no. 15
p. 7757

Abstract

Read online

The basic oxygen steelmaking process (BOS) faces the issue of the absence of information about the melt temperature and the carbon concentration in the melt. Although deterministic models for predicting steelmaking process variables are being developed in metallurgical research, machine-learning models can model the nonlinearities of process variables and provide a good estimate of the target process variables. In this paper, five machine learning methods were applied to predict the temperature and carbon concentration in the melt at the endpoint of BOS. Multivariate adaptive regression splines (MARS), support-vector regression (SVR), neural network (NN), k-nearest neighbors (k-NN), and random forest (RF) methods were compared. Machine modeling was based on static and dynamic observations from many melts. In predicting from dynamic melting data, a method of pairing static and dynamic data to create a training set was proposed. In addition, this approach has been found to predict the dynamic behavior of temperature and carbon during melting. The results showed that the piecewise-cubic MARS model achieved the best prediction performance for temperature in testing on static and dynamic data. On the other hand, carbon predictions by machine models trained on joined static and dynamic data were more powerful. In the case of predictions from dynamic data, the best results were obtained by the k-NN-based model, i.e., carbon, and the piecewise-linear MARS model in the case of temperature. In contrast, the neural network recorded the lowest prediction performance in more tests.

Keywords