BMC Cancer (Dec 2009)
Association between polymorphisms in DNA repair genes and survival of non-smoking female patients with lung adenocarcinoma
Abstract
Abstract Background Excision repair cross-complementing group 1 (ERCC1) and group 2 (ERCC2), and X-ray repair cross-complementing group 1 (XRCC1) proteins play important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence treatment effect and survival of cancer patients. This study aimed to investigate the relationship between polymorphisms in ERCC2, ERCC1 and XRCC1 genes and survival of non-smoking female patients with lung adenocarcinoma. Methods We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to evaluate SNPs in ERCC2, ERCC1 and XRCC1 genes among 257 patients. Results The overall median survival time (MST) was 13.07 months. Increasing numbers of either ERCC1 118 or XRCC1 399 variant alleles were associated with shorter survival of non-smoking female lung adenocarcinoma patients (Log-rank P ERCC1 Asn118Asn were 1.48 and 2.67 compared with those with CC genotype. For polymorphism of XRCC1 399, the HRs were 1.28 and 2.68 for GA and AA genotype. When variant alleles across both polymorphisms were combined to analysis, the increasing number of variant alleles was associated with decreasing overall survival. Using the stepwise Cox regression analysis, we found that the polymorphisms in ERCC1 and XRCC1, tumor stage and chemotherapy or radiotherapy status independently predicted overall survival of non-smoking female patients with lung adenocarcinoma. Conclusions Genetic polymorphisms in ERCC1 and XRCC1 genes might be prognostic factors in non-smoking female patients with lung adenocarcinoma.