Smart Learning Environments (Jul 2021)
Review on self-regulated learning in smart learning environment
Abstract
Abstract Despite the increasing use of the self-regulated learning process in the smart learning environment, understanding the concepts from a theoretical perspective and empirical evidence are limited. This study used a systematic review to explore models, design tools, support approaches, and empirical research on the self-regulated learning process in the smart learning environment. This review revealed that there is an increasing body of literature from 2012 to 2020. The analysis shows that self-regulated learning is a critical factor influencing a smart learning environment’s learning process. The self-regulated learning components, including motivation, cognitive, metacognitive, self-efficiency, and metacognitive components, are most cited in the literature. Furthermore, self-regulated strategies such as goal setting, helping-seeking, time management, and self-evaluation have been founded to be frequently supported in the literature. Besides, limited theoretical models are designed to support the self-regulated learning process in a smart learning environment. Furthermore, most evaluations of the self-regulated learning process in smart learning environment are quantitative methods with limited mixed methods. The design tools such as visualization, learning agent, social comparison, and recommendation are frequently used to motivate students’ learning engagement and performance. Finally, the paper presents our conclusion and future directions supporting the self-regulated learning process in the smart learning environment.
Keywords