Insects (Apr 2025)
Vitellogenesis and Embryogenesis in Spiders: A Biochemical Perspective
Abstract
This review compiles information on the biochemistry of spider reproduction, from vitellogenesis to postembryonic development. Despite the diversity of spiders, biochemical studies on their reproduction remain scarce. The structures, functions, and relationships of vitellogenins and lipovitellins across different groups are compared. Information on two vitellogenin-associated proteins (30 and 47 kDa) is presented and discussed. By analyzing females at different reproductive stages—previtellogenesis, early vitellogenesis, vitellogenesis, and postvitellogenesis—as well as males, we examined lipid and fatty acid synthesis, mobilization, and accumulation in the yolk. Lipid dynamics across vitellogenic organs, such as the intestinal diverticula, hemolymph, and ovaries, were established. Structural lipids, mainly phosphatidylcholine and phosphatidylethanolamine, were the predominant yolk components, followed by triacylglycerols. The gonadosomatic and hepatosomatic indices are described for the first time in spiders, providing a new tool for studying vitellogenesis. Hemocyanin was detected in early spider eggs, suggesting a role in organogenesis, with its concentration increasing in later embryonic stages. In contrast, lipovitellin consumption was observed throughout embryonic development until juvenile emergence. The data compiled in this review provide valuable insights into the molecular interactions underlying a key process for oviparous animals.
Keywords