Journal of Thermal Science and Technology (Jun 2012)
Robust Gas Turbine Combustor with Acoustic Liner
Abstract
Combustion oscillation of a self-excited thermo-acoustic phenomenon occurs inside the gas turbine combustor. Its excessive pressure fluctuation may impair the gas turbine engine operation, and could result in hardware severe damages. Therefore, combustion oscillation is one of the problems of the gas turbine development. In this paper, acoustic liner of an acoustic damping appending device to suppress the combustion oscillation is developed and discussed. Acoustic liner consists of a perforated plate, which the acoustic analysis models have been researched well at other papers referenced in this paper, and back cavity. The accuracy of these acoustic analysis models was verified by the laboratory model tests, and then the effectiveness that acoustic liner can suppress combustion oscillation at high frequencies was verified by the actual engine operation tests. This suppression method can be designed without the detailed combustion prediction. Hence the credible design is relatively easy. As the results of the actual engine operation tests shown in this paper, the gas turbine combustor with acoustic liner can be operating robustly without worrying about high frequency oscillation, and future more contributions to the combustor development can be expected.
Keywords