Plants (Aug 2021)

Genetic Diversity of Phenotypic and Biochemical Traits in VIR Radish (<i>Raphanus sativus</i> L.) Germplasm Collection

  • Anastasia B. Kurina,
  • Dmitry L. Kornyukhin,
  • Alla E. Solovyeva,
  • Anna M. Artemyeva

DOI
https://doi.org/10.3390/plants10091799
Journal volume & issue
Vol. 10, no. 9
p. 1799

Abstract

Read online

Small radish and radish are economically important root crops that represent an integral part of a healthy human diet. The world collection of Raphanus L. root crops, maintained in the VIR genebank, includes 2810 accessions from 75 countries around the world, of which 2800 (1600 small radish, 1200 radish) belong to R. sativus species, three to R. raphanistrum, three to R. landra, and four to R. caudatus. It is necessary to systematically investigate the historical and modern gene pool of root-bearing plants of R. sativus and provide new material for breeding. The material for our research was a set of small radish and radish accessions of various ecological groups and different geographical origin, fully covering the diversity of the species. The small radish subset included 149 accessions from 37 countries, belonging to 13 types of seven varieties of European and Chinese subspecies. The radish subset included 129 accessions from 21 countries, belonging to 18 types of 11 varieties of European, Chinese, and Japanese subspecies. As a result of the evaluation of R. sativus accessions according to phenological, morphological, and biochemical analyses, a wide variation of these characteristics was revealed, which is due to the large genetic diversity of small radish and radish of various ecological and geographical origins. The investigation of the degree of variation regarding phenotypic and biochemical traits revealed adaptive stable and highly variable characteristics of R. sativus accessions. Such insights are crucial for the establishment and further use of trait collections. Trait collections facilitate germplasm use and contribute significantly to the preservation of genetic diversity of the gene pool.

Keywords