Journal of High Energy Physics (Dec 2023)
Photon-rejection power of the Light Dark Matter eXperiment in an 8 GeV beam
- The LDMX collaboration,
- Torsten Åkesson,
- Cameron Bravo,
- Liam Brennan,
- Lene Kristian Bryngemark,
- Pierfrancesco Butti,
- E. Craig Dukes,
- Valentina Dutta,
- Bertrand Echenard,
- Thomas Eichlersmith,
- Jonathan Eisch,
- Einar Elén,
- Ralf Ehrlich,
- Cooper Froemming,
- Andrew Furmanski,
- Niramay Gogate,
- Chiara Grieco,
- Craig Group,
- Hannah Herde,
- Christian Herwig,
- David G. Hitlin,
- Tyler Horoho,
- Joseph Incandela,
- Wesley Ketchum,
- Gordan Krnjaic,
- Amina Li,
- Jeremiah Mans,
- Phillip Masterson,
- Sophie Middleton,
- Omar Moreno,
- Geoffrey Mullier,
- Joseph Muse,
- Timothy Nelson,
- Rory O’Dwyer,
- Leo Östman,
- James Oyang,
- Jessica Pascadlo,
- Ruth Pöttgen,
- Luis G. Sarmiento,
- Philip Schuster,
- Matthew Solt,
- Cristina Mantilla Suarez,
- Lauren Tompkins,
- Natalia Toro,
- Nhan Tran,
- Erik Wallin,
- Andrew Whitbeck,
- Danyi Zhang
Affiliations
- The LDMX collaboration
- Torsten Åkesson
- Lund University, Department of Physics
- Cameron Bravo
- SLAC National Accelerator Laboratory
- Liam Brennan
- University of California at Santa Barbara
- Lene Kristian Bryngemark
- Lund University, Department of Physics
- Pierfrancesco Butti
- SLAC National Accelerator Laboratory
- E. Craig Dukes
- University of Virginia
- Valentina Dutta
- Carnegie Mellon University
- Bertrand Echenard
- California Institute of Technology
- Thomas Eichlersmith
- University of Minnesota
- Jonathan Eisch
- Fermi National Accelerator Laboratory
- Einar Elén
- Lund University, Department of Physics
- Ralf Ehrlich
- University of Virginia
- Cooper Froemming
- University of Minnesota
- Andrew Furmanski
- University of Minnesota
- Niramay Gogate
- Texas Tech University
- Chiara Grieco
- University of California at Santa Barbara
- Craig Group
- University of Virginia
- Hannah Herde
- Lund University, Department of Physics
- Christian Herwig
- Fermi National Accelerator Laboratory
- David G. Hitlin
- California Institute of Technology
- Tyler Horoho
- University of Virginia
- Joseph Incandela
- University of California at Santa Barbara
- Wesley Ketchum
- Fermi National Accelerator Laboratory
- Gordan Krnjaic
- Fermi National Accelerator Laboratory
- Amina Li
- University of California at Santa Barbara
- Jeremiah Mans
- University of Minnesota
- Phillip Masterson
- University of California at Santa Barbara
- Sophie Middleton
- California Institute of Technology
- Omar Moreno
- SLAC National Accelerator Laboratory
- Geoffrey Mullier
- Lund University, Department of Physics
- Joseph Muse
- University of Minnesota
- Timothy Nelson
- SLAC National Accelerator Laboratory
- Rory O’Dwyer
- Stanford University
- Leo Östman
- Lund University, Department of Physics
- James Oyang
- California Institute of Technology
- Jessica Pascadlo
- University of Virginia
- Ruth Pöttgen
- Lund University, Department of Physics
- Luis G. Sarmiento
- Lund University, Department of Physics
- Philip Schuster
- SLAC National Accelerator Laboratory
- Matthew Solt
- University of Virginia
- Cristina Mantilla Suarez
- Fermi National Accelerator Laboratory
- Lauren Tompkins
- Stanford University
- Natalia Toro
- SLAC National Accelerator Laboratory
- Nhan Tran
- Fermi National Accelerator Laboratory
- Erik Wallin
- Lund University, Department of Physics
- Andrew Whitbeck
- Texas Tech University
- Danyi Zhang
- University of California at Santa Barbara
- DOI
- https://doi.org/10.1007/JHEP12(2023)092
- Journal volume & issue
-
Vol. 2023,
no. 12
pp. 1 – 30
Abstract
Abstract The Light Dark Matter eXperiment (LDMX) is an electron-beam fixed-target experiment designed to achieve comprehensive model independent sensitivity to dark matter particles in the sub-GeV mass region. An upgrade to the LCLS-II accelerator will increase the beam energy available to LDMX from 4 to 8 GeV. Using detailed GEANT4-based simulations, we investigate the effect of the increased beam energy on the capabilities to separate signal and background, and demonstrate that the veto methodology developed for 4 GeV successfully rejects photon-induced backgrounds for at least 2 × 1014 electrons on target at 8 GeV.
Keywords