Vascular Health and Risk Management (Dec 2020)
Expression of Hypoxia-Inducible Factor-1α (HIF1A) and Lp-PLA2 in Low, Intermediate, and High Cardiovascular Disease Risk Population
Abstract
Teuku Heriansyah,1 Indah Nur Chomsy,2 Kumboyono Kumboyono,3 Pinandita Annisa Pratiwi,4 Titin Andri Wihastuti5 1Department of Cardiology and Vascular Medicine, Syiah Kuala University, Banda Aceh 23111, Indonesia; 2Master Program in Biomedical Science, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia; 3Nursing Department, Faculty of Medicine, University of Brawijaya, Malang 65145, Indonesia; 4Medical Study Program, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia; 5Department of Biomedicine, Faculty of Medicine, Brawijaya University, Malang 65145, IndonesiaCorrespondence: Teuku HeriansyahDepartment of Cardiology and Vascular Medicine, Syiah Kuala University, Banda Aceh 23111, IndonesiaEmail [email protected]: The pathomechanism of CVD is a complex and multifactorial process. The primary mechanism of CVD is atherosclerosis. Inflammation in atherogenesis raises the risk of hypoxia, which will activate hypoxia-inducible factor-1α (HIF1A). Also, together with lipoprotein-associated phospholipase A2 (Lp-PLA2), an inflammatory mediator for atherogenesis.Purpose: This study aims to measure the hypoxia-inducible factor-1α (HIF1A) expression and its correlation to Lp-PLA2 expression at low-risk, intermediate, and high-risk CVD populations.Patients and Methods: The study used a correlational analysis method with a total sampling technique in 160 individuals in the risk population. The atherosclerosis risk group was analyzed using the Framingham Risk Score and categorized into low, intermediate, and high-risk groups. Venous blood samples taken from respondents were measured using the ELISA method with Lp-PLA2 and HIF-1α as parameters. Data were analyzed using normality test, homogeneity test, one-way ANOVA, post hoc–Tukey HSD, and Pearson correlation.Results: The concentration of HIF1A had a very strong correlation with Lp-PLA2 expression, both in the low-risk group (r = 0.512), intermediate (r = 0.512), and high (r = 0.715) (P < 0.05). However, the concentrations of Lp-PLA2 did not match the FRS.Conclusion: HIF1A expression increased with increasing risk, while Lp-PLA2 expression decreased with increasing risk of atherosclerosis based on the FRS category. There is a significant correlation between HIF1A expression and Lp-PLA2 expression based on FRS.Keywords: cardiovascular disease, atherosclerosis, HIF1A, Lp-PLA2, Framingham Risk Score