Magnetoelectric Sensor Operating in <i>d</i><sub>15</sub> Thickness-Shear Mode for High-Frequency Current Detection
Fuchao Li,
Jingen Wu,
Sujie Liu,
Jieqiang Gao,
Bomin Lin,
Jintao Mo,
Jiacheng Qiao,
Yiwei Xu,
Yongjun Du,
Xin He,
Yifei Zhou,
Lan Zeng,
Zhongqiang Hu,
Ming Liu
Affiliations
Fuchao Li
State Grid Sichuan Electric Power Company, Chengdu 610041, China
Jingen Wu
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Sujie Liu
State Grid Sichuan Electric Power Company, Chengdu 610041, China
Jieqiang Gao
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Bomin Lin
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Jintao Mo
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Jiacheng Qiao
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yiwei Xu
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yongjun Du
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Xin He
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yifei Zhou
State Grid Sichuan Electric Power Company, Chengdu 610041, China
Lan Zeng
State Grid Sichuan Electric Power Company, Chengdu 610041, China
Zhongqiang Hu
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Ming Liu
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
For the application of high-frequency current detection in power systems, such as very fast transient current, lightning current, partial discharge pulse current, etc., current sensors with a quick response are indispensable. Here, we propose a high-frequency magnetoelectric current sensor, which consists of a PZT piezoelectric ceramic and Metglas amorphous alloy. The proposed sensor is designed to work under d15 thickness-shear mode, with the resonant frequency around 1.029 MHz. Furthermore, the proposed sensor is fabricated as a high-frequency magnetoelectric current sensor. A comparative experiment is carried out between the tunnel magnetoresistance sensor and the magnetoelectric sensor, in the aspect of high-frequency current detection up to 3 MHz. Our experimental results demonstrate that the d15 thickness-shear mode magnetoelectric sensor has great potential for high-frequency current detection in smart grids.