Frontiers in Immunology (Aug 2022)

Pharmacological activation of the C5a receptor leads to stimulation of the β-adrenergic receptor and alleviates cognitive impairment in a murine model of familial Alzheimer’s disease

  • Eleni Fella,
  • Revekka Papacharalambous,
  • Demos Kynigopoulos,
  • Maria Ioannou,
  • Rita Derua,
  • Christiana Christodoulou,
  • Myrto Stylianou,
  • Christos Karaiskos,
  • Alexia Kagiava,
  • Gerasimou Petroula,
  • Chryso Pierides,
  • Maria Kyriakou,
  • Laura Koumas,
  • Laura Koumas,
  • Paul Costeas,
  • Paul Costeas,
  • Paul Costeas,
  • Elena Panayiotou

DOI
https://doi.org/10.3389/fimmu.2022.947071
Journal volume & issue
Vol. 13

Abstract

Read online

Alzheimer’s disease (AD) is a progressive neurodegenerative disease of the brain causing either familial or sporadic dementia. We have previously administered the modified C5a receptor agonist (EP67) for a short period to a transgenic mouse model of AD (5XFAD) and have observed not only reduction in β-amyloid deposition and gliosis but also improvement in cognitive impairment. Inquiring, however, on the effects of EP67 in an already heavily burdened animal, thus representing a more realistic scenario, we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a significant decrease in both fibrillar and pre-fibrillar β-amyloid as well as remarkable amelioration of cognitive impairment. Following proteomic analysis and pathway association, we postulate that these events are triggered through the upregulation of β-adrenergic and GABAergic signaling. In summary, our results reveal how inflammatory responses can be employed in inducing tangible phenotype improvements even in advanced stages of AD.

Keywords