Separations (Jun 2024)
A Novel Solvent Microextraction Lab-in-Syringe System Coupled with Atomic Absorption Spectrometry for Thallium Determination in Water Samples
Abstract
Thallium is an accumulative highly toxic metal, that can be present in environmental samples due to industrial pollution and is dangerous for living organisms. Thus, its determination at trace levels is necessary. The lab-in-syringe (LIS) is considered to be a simple, functional, and versatile, technique that combines operational concepts and flow and sequential injection analysis. In this study, a liquid-phase microextraction LIS system was developed as a front-end to flame atomic absorption spectrometry (FAAS) for the determination of thallium in water samples. The proposed approach is based on the formation of Tl(III) ammonium–pyrrolidine–dithiocarbamate complex followed by its extraction using di-isobutyl-ketone. These procedures take place within the syringe barrel of the LIS system. The limit of detection of the developed method was 2.1 µg L−1 with a linear range from 7.0 to 400 µg L−1. The relative standard deviation (RSD) was 3.9% (at 50.0 µg L−1 Tl(I)), demonstrating good precision. Moreover, good method accuracy was obtained since the relative recovery values were within the range of 93.4–101.2%. Finally, reliable method applicability and green merits were demonstrated using the blue applicability grade index and green analytical procedure index, respectively. The proposed method was used for the analysis of environmental water samples.
Keywords