Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures
Liangge He,
Mingzhu Li,
Xinglie Wang,
Xiaoyan Wu,
Guanghui Yue,
Tianfu Wang,
Yan Zhou,
Baiying Lei,
Guangqian Zhou
Affiliations
Liangge He
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School
Mingzhu Li
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School
Xinglie Wang
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School
Xiaoyan Wu
Department of Dermatology, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University
Guanghui Yue
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School
Tianfu Wang
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School
Yan Zhou
Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School
Baiying Lei
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School
Guangqian Zhou
Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School
Abstract Background Cell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disorders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mesenchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the development of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be used for detection. However, morphological assessment during MSC production is often subjective and uncertain. New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs. Results We have developed a successful morphology-based Cascade region-based convolution neural network (Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes with other senescence indicators. Conclusions This deep learning has been applied for the first time to detect senescent MSCs, showing promising performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive and real-time morphological image analysis integrated into cell production.