Nanomaterials (Aug 2022)

Designing Highly Efficient Cu<sub>2</sub>O-CuO Heterojunction CO Oxidation Catalysts: The Roles of the Support Type and Cu<sub>2</sub>O-CuO Interface Effect

  • Fen Zhao,
  • Yiyu Shi,
  • Leilei Xu,
  • Mindong Chen,
  • Yingying Xue,
  • Cai-E Wu,
  • Jian Qiu,
  • Ge Cheng,
  • Jingxin Xu,
  • Xun Hu

DOI
https://doi.org/10.3390/nano12173020
Journal volume & issue
Vol. 12, no. 17
p. 3020

Abstract

Read online

In this work, a series of Cu2O/S (S = α-MnO2, CeO2, ZSM-5, and Fe2O3) supported catalysts with a Cu2O loading amount of 15% were prepared by the facile liquid-phase reduction deposition–precipitation strategy and investigated as CO oxidation catalysts. It was found that the Cu2O/α-MnO2 catalyst exhibits the best catalytic activity for CO oxidation. Additionally, a series of Cu2O-CuO/α-MnO2 heterojunctions with varied proportion of Cu+/Cu2+ were synthesized by further calcining the pristine Cu2O/α-MnO2 catalyst. The ratio of the Cu+/Cu2+ could be facilely regulated by controlling the calcination temperature. It is worth noting that the Cu2O-CuO/α-MnO2-260 catalyst displays the best catalytic performance. Moreover, the kinetic studies manifest that the apparent activation energy could be greatly reduced owing to the excellent redox property and the Cu2O-CuO interface effect. Therefore, the Cu2O-CuO heterojunction catalysts supported on α-MnO2 nanotubes are believed to be the potential catalyst candidates for CO oxidation with advanced performance.

Keywords