Applied Sciences (Dec 2016)

Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons

  • Lipeng Hou,
  • Cheng Chen,
  • Li Zhang,
  • Qiankun Xu,
  • Xinxin Yang,
  • Muhammad Ismail Farooq,
  • Junbo Han,
  • Ruibin Liu,
  • Yongyou Zhang,
  • Lijie Shi,
  • Bingsuo Zou

DOI
https://doi.org/10.3390/app7010039
Journal volume & issue
Vol. 7, no. 1
p. 39

Abstract

Read online

Spin-related emission properties have important applications in the future information technology; however, they involve microscopic ferromagnetic coupling, antiferromagnetic or ferrimagnetic coupling between transition metal ions and excitons, or d state coupling with phonons is not well understood in these diluted magnetic semiconductors (DMS). Fe3+ doped ZnSe nanoribbons, as a DMS example, have been successfully prepared by a thermal evaporation method. Their power-dependent micro-photoluminescence (PL) spectra and temperature-dependent PL spectra of a single ZnSe:Fe nanoribbon have been obtained and demonstrated that alio-valence ion doping diminishes the exciton magnetic polaron (EMP) effect by introducing exceeded charges. The d-d transition emission peaks of Fe3+ assigned to the 4T2 (G) → 6A1 (S) transition at 553 nm and 4T1 (G) → 6A1 (S) transition at 630 nm in the ZnSe lattice have been observed. The emission lifetimes and their temperature dependences have been obtained, which reflected different spin–phonon interactions. There exists a sharp decrease of PL lifetime at about 60 K, which hints at a magnetic phase transition. These spin–spin and spin–phonon interaction related PL phenomena are applicable in the future spin-related photonic nanodevices.

Keywords