Separations (Jun 2024)

Purifying High-Purity Copper via Semi-Continuous Directional Solidification: Insights from Numerical Simulations

  • Yao Wu,
  • Yunhu Zhang,
  • Long Zeng,
  • Hongxing Zheng

DOI
https://doi.org/10.3390/separations11060176
Journal volume & issue
Vol. 11, no. 6
p. 176

Abstract

Read online

High-purity copper is essential for fabricating advanced microelectronic devices, particularly integrated circuit interconnects. As the industry increasingly emphasizes scalable and efficient purification methods, this study investigates the multi-physics interactions during the semi-continuous directional solidification process, utilizing a Cu-1 wt.%Ag model alloy. Coupled simulation calculations examine the spatial distribution patterns of the impurity element silver (Ag) within semi-continuously solidified ingots under varying pulling rates and melt temperatures. The objective is to provide technical insights into the utilization of the semi-continuous directional solidification method for high-purity copper purification. The findings reveal that increasing the pulling rate and melt temperature leads to a downward shift in the solid–liquid interface relative to the mold top during processing. Alongside the primary clockwise vortex flow, a secondary weak vortex emerges near the solid–liquid interface, facilitating the migration of the impurity element Ag toward the central axis and amplifying radial impurity fluctuations. Furthermore, diverse pulling rates and melt temperature conditions unveil a consistent trend along the ingot’s height, which is characterized by an initial increase in average Ag content, followed by stabilization and then a rapid ascent during the late stage of solidification, with higher pulling rates and melt temperatures expediting this rapid ascent. Leveraging these insights, a validation experiment using 4N-grade recycled copper in a small-scale setup demonstrates the effectiveness of the semi-continuous directional solidification process for high-purity copper production, with copper samples extracted at 1/4 and 3/4 ingot heights achieving a 5N purity level of 99.9994 wt.% and 99.9993 wt.%, respectively.

Keywords