Journal of Advanced Transportation (Jan 2021)
Resilience-Based Optimization of Postdisaster Restoration Strategy for Road Networks
Abstract
This work proposes a framework for the optimization of postdisaster road network restoration strategies from a perspective of resilience. The network performance is evaluated by the total system travel time (TSTT). After the implementation of a postdisaster restoration schedule, the network flows in a certain period of days are on a disequilibrium state; thus, a link-based day-to-day traffic assignment model is employed to compute TSTT and simulate the traffic evolution. Two indicators are developed to assess the road network resilience, i.e., the resilience of performance loss and the resilience of recovery rapidity. The former is calculated based on TSTT, and the latter is computed according to the restoration makespan. Then, we formulate the restoration optimization problem as a resilience-based bi-objective mixed integer programming model aiming to maximize the network resilience. Due to the NP-hardness of the model, a genetic algorithm is developed to solve the model. Finally, a case study is conducted to demonstrate the effectiveness of the proposed method. The effects of key parameters including the number of work crews, travelers’ sensitivity to travel time, availability of budget, and decision makers’ preference on the values of the two objectives are investigated as well.