IEEE Access (Jan 2019)

Realistic Multi-Scale Modeling of Household Electricity Behaviors

  • Lorenzo Bottaccioli,
  • Santa Di Cataldo,
  • Andrea Acquaviva,
  • Edoardo Patti

DOI
https://doi.org/10.1109/ACCESS.2018.2886201
Journal volume & issue
Vol. 7
pp. 2467 – 2489

Abstract

Read online

To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively.

Keywords