Self-Assembled Bifunctional Copper Hydroxide/Gold-Ordered Nanoarray Composites for Fast, Sensitive, and Recyclable SERS Detection of Hazardous Benzene Vapors
Yanyan Lu,
Xuzhou Yuan,
Cuiping Jia,
Biao Lei,
Hongwen Zhang,
Zhipeng Zhao,
Shuyi Zhu,
Qian Zhao,
Weiping Cai
Affiliations
Yanyan Lu
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Xuzhou Yuan
Shandong Hengcheng Testing Technology Co., Ltd., Yantai 261400, China
Cuiping Jia
School of of Economics and Management (SEM), Weifang University of Science and Technology, Weifang 262700, China
Biao Lei
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Hongwen Zhang
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Zhipeng Zhao
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Shuyi Zhu
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Qian Zhao
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Weiping Cai
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Volatile organic compounds (VOCs), particularly monoaromatic hydrocarbon compounds (MACHs), pose a potential risk to the atmospheric environment and human health. Therefore, the progressive development of efficient detection methodologies is a pertinent need, which is still a challenge at present. In this study, we present a rapid and sensitive method to detect trace amounts of MACHs using a bifunctional SERS composite substrate. We prepared an Au/SiO2 enhanced layer and a porous Cu(OH)2 adsorption layer via microfluidic-assisted gas-liquid interface self-assembly. The composite substrate effectively monitored changes in benzaldehyde using time-varying SERS spectra, and track-specifically identified various VOCs such as benzene, xylene, styrene, and nitrobenzene. In general, the substrate exhibited a rapid response time of 20 s to gaseous benzaldehyde, with a minimum detection concentration of less than 500 ppt. Further experimental assessments revealed an optimum Cu(OH)2 thickness of the surrounding adsorption layer of 150 nm, which can achieve an efficient SERS response to MACHs. Furthermore, the recoverable and reusable property of the composite substrate highlights its practicality. This study presents a straightforward and efficient approach for detecting trace gaseous VOCs using SERS, with significant implications in the designing of SERS substrates for detecting other VOCs.