Brain Research Bulletin (Apr 2022)

Varenicline improves cognitive impairment in a mouse model of mPFC ischemia: The possible roles of inflammation, apoptosis, and synaptic factors

  • Fatemehsadat Seyedaghamiri,
  • Leila Hosseini,
  • Sareh Kazmi,
  • Javad Mahmoudi,
  • Dariush Shanehbandi,
  • Abbas Ebrahimi-Kalan,
  • Reza Rahbarghazi,
  • Saeed Sadigh-Eteghad,
  • Mehdi Farhoudi

Journal volume & issue
Vol. 181
pp. 36 – 45

Abstract

Read online

Ischemia in the medial prefrontal cortex (mPFC) causes cognitive impairment in stroke cases. This study aimed to examine the effects of varenicline as α7 and α4β2 nicotine acetylcholine receptors (nAChRs) agonist, on cognitive impairment, inflammation, apoptosis, and synaptic dysfunction in mPFC ischemia. Mice were divided to three groups of control, sham, or photothrombotic mPFC ischemia model. The control and sham groups received 2 ml/kg of normal saline for a 14-day period. As well, the animals in the ischemia groups received normal saline (2 ml/kg) or varenicline at 0.1, 1, and 3 mg/kg doses for a 14-day period. Anxiety-like behaviors were then assessed by open field (OFT) and elevated plus-maze (EPM) tests. Memory was also evaluated using Morris water maze (MWM) and novel object recognition (NOR) tests. The levels of inflammatory (IL-1β, TNF-α), apoptotic (Bax, caspase3, BCL-2), and synaptic (SYP, PSD-95, and GAP-43) proteins were examined using the western blot method. In addition, the histological evaluation was performed to assess tissue damage. The administration of Varenicline at the dose of 3 mg/kg reduced the IL-1β, TNF-α, Bax, and caspase3 levels. Moreover, it increased BCL-2, SYP, PSD-95, and GAP-43 levels at the same dose and ameliorated memory impairment and anxiety-like behaviors in mPFC ischemic mice. Varenicline improved cognitive impairment by blocking inflammation and apoptosis, improving synaptic factors, and diminishing tissue damage in the mPFC ischemic mice.

Keywords