Impact of Soil Inoculation with <i>Bacillus amyloliquefaciens</i> FZB42 on the Phytoaccumulation of Germanium, Rare Earth Elements, and Potentially Toxic Elements
Precious Uchenna Okoroafor,
Lotte Mann,
Kerian Amin Ngu,
Nazia Zaffar,
Nthati Lillian Monei,
Christin Boldt,
Thomas Reitz,
Hermann Heilmeier,
Oliver Wiche
Affiliations
Precious Uchenna Okoroafor
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Lotte Mann
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Kerian Amin Ngu
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Nazia Zaffar
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Nthati Lillian Monei
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Christin Boldt
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Thomas Reitz
Department of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Theodor–Lieser Str. 4, 06120 Halle, Germany
Hermann Heilmeier
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Oliver Wiche
Institute of Biosciences, Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Bioaugmentation promises benefits for agricultural production as well as for remediation and phytomining approaches. Thus, this study investigated the effect of soil inoculation with the commercially available product RhizoVital®42, which contains Bacillus amyloliquefaciens FZB42, on nutrient uptake and plant biomass production as well as on the phytoaccumulation of potentially toxic elements, germanium, and rare earth elements (REEs). Zea mays and Fagopyrum esculentum were selected as model plants, and after harvest, the element uptake was compared between plants grown on inoculated versus reference soil. The results indicate an enrichment of B. amyloliquefaciens in inoculated soils as well as no significant impact on the inherent bacterial community composition. For F. esculentum, inoculation increased the accumulation of most nutrients and As, Cu, Pb, Co, and REEs (significant for Ca, Cu, and Co with 40%, 2042%, and 383%, respectively), while it slightly decreased the uptake of Ge, Cr, and Fe. For Z. mays, soil inoculation decreased the accumulation of Cr, Pb, Co, Ge, and REEs (significant for Co with 57%) but showed an insignificant increased uptake of Cu, As, and nutrient elements. Summarily, the results suggest that bioaugmentation with B. amyloliquefaciens is safe and has the potential to enhance/reduce the phytoaccumulation of some elements and the effects of inoculation are plant specific.