Scientific Reports (Jan 2024)
A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays
Abstract
Abstract Standard enzyme-linked immunosorbent assays based on microplates are frequently utilized for various molecular sensing, disease screening, and nanomedicine applications. Comparing this multi-well plate batched analysis to non-batched or non-standard testing, the diagnosis expenses per patient are drastically reduced. However, the requirement for rather big and pricey readout instruments prevents their application in environments with limited resources, especially in the field. In this work, a handheld cellphone-based colorimetric microplate reader for quick, credible, and novel analysis of digital images of human cancer cell lines at a reasonable price was developed. Using our in-house-developed app, images of the plates are captured and sent to our servers, where they are processed using a machine learning algorithm to produce diagnostic results. Using FDA-approved human epididymis protein of ovary IgG (HE4), prostate cancer cell line (PC3), and bladder cancer cell line (5637) ELISA tests, we successfully examined this mobile platform. The accuracies for the HE4, PC3, and 5637 tests were 93%, 97.5%, and 97.2%, respectively. By contrasting the findings with the measurements made using optical absorption EPOCH microplate readers and optical absorption Tecan microplate readers, this approach was found to be accurate and effective. As a result, digital image colorimetry on smart devices offered a practical, user-friendly, affordable, precise, and effective method for quickly identifying human cancer cell lines. Thus, healthcare providers might use this portable device to carry out high-throughput illness screening, epidemiological investigations or monitor vaccination campaigns.