PLoS ONE (Jan 2013)

Lipopolysaccharide induces endoplasmic store Ca2+-dependent inflammatory responses in lung microvessels.

  • Kathirvel Kandasamy,
  • Lavanya Bezavada,
  • Rachel B Escue,
  • Kaushik Parthasarathi

DOI
https://doi.org/10.1371/journal.pone.0063465
Journal volume & issue
Vol. 8, no. 5
p. e63465

Abstract

Read online

The pulmonary microvasculature plays a critical role in endotoxin-induced acute lung injury. However, the relevant signaling remain unclear. Specifically the role of endothelial Ca(2+) in the induction of endotoxin-mediated responses in lung microvessels remains undefined. Toward elucidating this, we used the isolated blood-perfused rat lung preparation. We loaded microvessels with the Ca(2+) indicator, Fura 2 AM and then determined Ca(2+) responses to infusions of lipopolysaccharide (LPS) into the microvessels. LPS induced a more than two-fold increase in the amplitude of cytosolic Ca(2+) oscillations. Inhibiting inositol 1,4,5 trisphosphate receptors on endoplasmic reticulum (ER) Ca(2+) stores with Xestospongin C (XeC), blocked the LPS-induced increase in the Ca(2+) oscillation amplitude. However, XeC did not affect entry of external Ca(2+) via plasma membrane Ca(2+) channels in lung microvascular endothelial cells. This suggested that LPS augmented the oscillations via release of Ca(2+) from ER stores. In addition, XeC also blocked LPS-mediated activation and nuclear translocation of nuclear factor-kappa B in lung microvessels. Further, inhibiting ER Ca(2+) release blunted increases in intercellular adhesion molecule-1 expression and retention of naïve leukocytes in LPS-treated microvessels. Taken together, the data suggest that LPS-mediated Ca(2+) release from ER stores underlies nuclear factor-kappa B activation and downstream inflammatory signaling in lung microvessels. Thus, we show for the first time a role for inositol 1,4,5 trisphosphate-mediated ER Ca(2+) release in the induction of LPS responses in pulmonary microvascular endothelium. Mechanisms that blunt this signaling may mitigate endotoxin-induced morbidity.