Molecules (Oct 2019)

Nitrogen-Doped Hierarchical Meso/Microporous Carbon from Bamboo Fungus for Symmetric Supercapacitor Applications

  • Zhanghua Zou,
  • Yu Lei,
  • Yingming Li,
  • Yanhua Zhang,
  • Wei Xiao

DOI
https://doi.org/10.3390/molecules24203677
Journal volume & issue
Vol. 24, no. 20
p. 3677

Abstract

Read online

We report the synthesis of nitrogen-doped hierarchical meso/microporous carbon using renewable biomass bamboo fungus as precursor via two-step pyrolysis processes. It is found that the developed porous carbon (NHPC-800) features honeycomb-like cellular framework with well-developed porosity, huge specific surface area (1708 m2 g−1), appropriate nitrogen-doping level (3.2 at.%) and high mesopore percentage (25.5%), which are responsible for its remarkable supercapacitive performances. Electrochemical tests suggest that the NHPC-800 electrode offers the largest specific capacitance of 228 F g−1, asplendid rate capability and stable electrochemical behaviors in a traditional three-electrode system. Additionally, asymmetric supercapacitor device is built based on this product as well. An individual as-assembled supercapacitor of NHPC-800//NHPC-800 delivers the maximum energy density of 4.3 Wh kg−1; retains the majority of capacitanceat large current densities; and shows terrific cycling durability with negligible capacitance drop after long-term charge/discharge for beyond 10,000 cycles even at a high current density of 10 A g−1. These excellent supercapacitive properties of NHPC-800 in both three- and two-electrode setups outperform those of lots of biomass-derived porous carbons and thus make it a perspective candidate for producing cost-effective and high-performance supercapacitors

Keywords