Scientific Reports (May 2023)

Dephasing by optical phonons in GaN defect single-photon emitters

  • Yifei Geng,
  • Jialun Luo,
  • Len van Deurzen,
  • Huili (Grace) Xing,
  • Debdeep Jena,
  • Gregory David Fuchs,
  • Farhan Rana

DOI
https://doi.org/10.1038/s41598-023-35003-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Single-photon defect emitters (SPEs), especially those with magnetically and optically addressable spin states, in technologically mature wide bandgap semiconductors are attractive for realizing integrated platforms for quantum applications. Broadening of the zero phonon line (ZPL) caused by dephasing in solid state SPEs limits the indistinguishability of the emitted photons. Dephasing also limits the use of defect states in quantum information processing, sensing, and metrology. In most defect emitters, such as those in SiC and diamond, interaction with low-energy acoustic phonons determines the temperature dependence of the dephasing rate and the resulting broadening of the ZPL with the temperature obeys a power law. GaN hosts bright and stable single-photon emitters in the 600–700 nm wavelength range with strong ZPLs even at room temperature. In this work, we study the temperature dependence of the ZPL spectra of GaN SPEs integrated with solid immersion lenses with the goal of understanding the relevant dephasing mechanisms. At temperatures below ~ 50 K, the ZPL lineshape is found to be Gaussian and the ZPL linewidth is temperature independent and dominated by spectral diffusion. Above ~ 50 K, the linewidth increases monotonically with the temperature and the lineshape evolves into a Lorentzian. Quite remarkably, the temperature dependence of the linewidth does not follow a power law. We propose a model in which dephasing caused by absorption/emission of optical phonons in an elastic Raman process determines the temperature dependence of the lineshape and the linewidth. Our model explains the temperature dependence of the ZPL linewidth and lineshape in the entire 10–270 K temperature range explored in this work. The ~ 19 meV optical phonon energy extracted by fitting the model to the data matches remarkably well the ~ 18 meV zone center energy of the lowest optical phonon band ( $$E_{2}(low)$$ E 2 ( l o w ) ) in GaN. Our work sheds light on the mechanisms responsible for linewidth broadening in GaN SPEs. Since a low energy optical phonon band ( $$E_{2}(low)$$ E 2 ( l o w ) ) is a feature of most group III–V nitrides with a wurtzite crystal structure, including hBN and AlN, we expect our proposed mechanism to play an important role in defect emitters in these materials as well.