PLoS ONE (Jan 2020)

Novel measurement tool and model for aberrant urinary stream in 3D printed urethras derived from human tissue.

  • Andrew J Cohen,
  • German Patino,
  • Mehran Mirramezani,
  • Sudarshan Srirangapatanam,
  • Anas Tresh,
  • Bhagat Cheema,
  • Jenny Tai,
  • Dylan Romero,
  • Anthony Enriquez,
  • Laurence S Baskin,
  • Shawn C Shadden,
  • Benjamin N Breyer

DOI
https://doi.org/10.1371/journal.pone.0241507
Journal volume & issue
Vol. 15, no. 11
p. e0241507

Abstract

Read online

BackgroundAn estimated 10% of male adults have split or dribbled stream leading to poor hygiene, embarrassment, and inconvenience. There is no current metric that measures male stream deviation.ObjectiveTo develop a novel method to measure spray in normal and abnormal anatomical conformations.Design, setting, and participantsWe developed a novel platform to reliably describe spray. We used cadaveric tissues and 3D Printed models to study the impact of meatal shape on the urinary stream. Cadaveric penile tissue and 3D printed models were affixed to a fluid pump and used to simulate micturition. Dye captured on fabric allowed for spray detection.Outcome measurements and statistical analysisSpray pattern area, deviation from normal location, and flowrates were recorded. Computational fluid dynamic models were created to study fluid vorticity.Results and limitationsObstructions at the penile tip worsened spray dynamics and reduced flow. Ventral meatotomy improved flowrate (pConclusionsWe developed a robust method to measure urine spray in a research setting. Dynamic 3D printed models hold promise as a methodology to study common pathologies in the urethra and corrective surgeries on the urine stream that would not be feasible in patients. These novel methods require further validation, but offer promise as a research and clinical tool.