Plants (Aug 2023)
Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction
Abstract
Trees in cacao Agroforestry systems (AFS) may present a high potential for cadmium (Cd) phytoextraction, helping to reduce Cd in cacao (Theobroma cacao L.) plants grown in contaminated soils. To assess this potential, four forest fine-woody species commonly found in cacao high-productive sites in Colombia (Tabebuia rosea, Terminalia superba, Albizia guachapele, and Cariniana pyriformis) were exposed to contrasting CdCl2 contamination levels (0, 6, and 12 ppm) on a hydroponic medium. Growth dynamics, tolerance index (TI), and Cd concentration and allocation in leaves, stems, and roots were evaluated for up to 90 days after initial exposure. T. superba, A. guachapele, and C. pyriformis were classified as moderately tolerant (TI > 0.6), and T. rosea was considered a sensitive species (TI C. pyriformis also showed the lowest relative growth rate. Among the evaluated forest species, A. guachapele exhibited the highest Cd accumulation capacity per plant (2.02 mg plant−1) but also exhibited a higher Cd allocation to leaves (4%) and a strong decrease in leaf and stem dry mass after 90 days of exposure (~75% and 50% respectively, compared to control treatments). Taking together all the favorable features exhibited by T. superba as compared to other CAFS tree species and recognized phytoextractor tree species in the literature, such as Cd hyperaccumulation, high tolerance index, low Cd concentration in leaves, and high Cd allocation to the stem (harvestable as wood), this species is considered to have a high potential for cadmium phytoextraction in cocoa agroforestry systems.
Keywords